An Innovation Roadmap for Marcellus

Ben Franklin Technology Partners / Shale Gas Innovation & Commercialization Center
November 18, 2011
Terms of use

Disclaimer

- We provide this document to help facilitate a conversation on industry issues.
- ADI Analytics LLC, the authors, or their affiliates and representatives do not make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any contents of this document.
- Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by ADI Analytics LLC, the authors, or their affiliates and representatives.
- By choosing to use the contents of this document, you do so at your own risk.
- ADI Analytics LLC and its affiliates and representatives are not responsible for any damage, whether physical, electronic, financial or otherwise that may result from the use of this document and its contents.

Usage Rights

- This document and its contents should not be reproduced, disclosed, or distributed – in part or its entirety – without the express prior written consent of ADI Analytics LLC.
- This document is intended for individual use and not for use in corporate documents or communications.
- This document is not to be shared on websites or blogs or through other media channels.
- If you are interested in licensing this material, please write to info@adi-analytics.com.
Outline

- Intro to ADI Analytics
- Background and Methodology
- Marcellus Innovation Needs
- Conclusions
ADI Analytics is an energy / chemical consulting firm that solves problems with a content- and data-driven approach

We use a Clear and Robust Approach …

Driven by hypotheses, data, and analytics

Grounded in industry expertise

Collaborative with client staff

… To Deliver Actionable Consulting and Insight

› Evaluate markets and opportunities to grow businesses

› Gather and analyze difficult-to-get information to address uncertainty

› Identify needs, ideas, and opportunities to optimize costs

› Design and implement processes to improve organizations
We specialize in energy, chemicals, and industrials with domain and functional expertise across the value chain ...

<table>
<thead>
<tr>
<th>Markets</th>
<th>Technology</th>
<th>Operations</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil & Gas</td>
<td>Exploration</td>
<td>Production</td>
<td>Refining</td>
</tr>
<tr>
<td>Power & Mining</td>
<td>Coal</td>
<td>Generation</td>
<td>Transmission</td>
</tr>
<tr>
<td>Renewables</td>
<td>Biomass</td>
<td>Solar</td>
<td>Wind</td>
</tr>
<tr>
<td>& Cleantech</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical &</td>
<td>Plastics</td>
<td>Materials</td>
<td>Auto</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
... Offering services that help clients understand markets, develop strategy, improve operations, and deploy technology

<table>
<thead>
<tr>
<th>Market Research</th>
<th>Competitive Benchmarking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduct in-depth research and analysis to identify new markets or segments, their size, profitability, growth, competitive landscape, client fit, and execution strategy</td>
<td>Benchmark client capabilities, costs, and competitiveness against industry based on public information and rigorous modeling and suggest improvement ideas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investment Analysis</th>
<th>Technology Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build valuation models to analyze investments in capital projects, businesses, or capabilities to estimate economic value, ROI, NPV, IRR, risks, and other metrics</td>
<td>Understand technologies including their business impact, cost, trends, competing options, deployment risk, and commercialization success</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Business Strategy</th>
<th>Innovation Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advise clients on competencies and improving them with organization and resource alignment to enhance competitiveness, entry barriers, and shareholder value</td>
<td>Implement programs for ideation, portfolio development, stage-gate maturation, open innovation, IP management, functional excellence, and talent development</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario Planning</th>
<th>Process Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop and explore carefully drawn future scenarios to define medium-, long-term visions and pressure-test them through quantitative, analytical models</td>
<td>Assess organizational goals and “as is” processes to identify gaps and design “to be” processes that fill gaps and achieve target goals</td>
</tr>
</tbody>
</table>
Our growing team brings experience in supporting blue-chip clients on various business and technical consulting projects

<table>
<thead>
<tr>
<th>U.S. Department of Energy</th>
<th>Assessed costs, economics, feasibility, and commercialization potential of several renewable energy technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream Independent</td>
<td>Identified strategic and technical needs to establish an unconventional business and designed a fit-for-purpose organization</td>
</tr>
<tr>
<td>Venture Capital Firm</td>
<td>Sized market, growth, and segment profitability of the oilfield services industry as groundwork to build investment fairway</td>
</tr>
<tr>
<td>Energy Equipment Vendor</td>
<td>Supported diversification strategy by sizing market and profiling customer willingness to switch vendors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select Clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>Fortune 100 Oil and Gas Major</td>
</tr>
<tr>
<td>FTSE 100 Oil and Gas Major</td>
</tr>
<tr>
<td>Fortune 500 Coal Company</td>
</tr>
<tr>
<td>Recent IPO Biofuels Start-Up</td>
</tr>
<tr>
<td>Energy-Focused VC Firm</td>
</tr>
<tr>
<td>Ben Franklin Technology Partners</td>
</tr>
<tr>
<td>Fortune 500 E&P Company</td>
</tr>
<tr>
<td>Energy Training Services Vendor</td>
</tr>
<tr>
<td>Asian Chemical Conglomerate</td>
</tr>
</tbody>
</table>
Outline

- Intro to ADI Analytics
- Background and Methodology
- Marcellus Innovation Needs
- Conclusions
ADI Analytics is studying Marcellus’ innovation needs to help Ben Franklin facilitate technology commercialization

SUPPLY
- Inventory relevant R&D / innovation work
- Prioritize ideas based on relevance to shale gas industry
- Stimulate further work by raising awareness of industry needs

OUTCOMES
- Build an informed view of shale gas industry needs and potential solutions
- Support development and commercialization of select technologies

DEMAND
- Identify and inventory industry’s technical needs / operational pain points
- Prioritize needs based on technical / commercial feasibility
- Facilitate interactions to drive adoption

Methodological Tools
- Expert Interviews
- Secondary Research
- Analytical Modeling
ADI Analytics is studying Marcellus’ innovation needs to help Ben Franklin facilitate technology commercialization

SUPPLY
- Inventory relevant R&D / innovation work
- Prioritize ideas based on relevance to shale gas industry
- Stimulate further work by raising awareness of industry needs

OUTCOMES
- Build an informed view of shale gas industry needs and potential solutions
- Support development and commercialization of select technologies

DEMAND
- Identify and inventory industry’s technical needs / operational pain points
- Prioritize needs based on technical / commercial feasibility
- Facilitate interactions to drive adoption

Methodological Tools

- Expert Interviews
- Secondary Research
- Analytical Modeling

Focus of this talk
The shale gas industry value chain was assessed in a systematic fashion ...

Exploration
- Current practices
- Delivery source
- Key challenges

Drilling & Completions
- Emerging technologies
- Metrics to improve
- Maturity level

Monetization
- Who is innovating?
- Delivery mode
- Define impact

Right to Operate
… Through a number of in-depth expert interviews

Expert Affiliations

- **Producers**, 44%
- **Investors**, 17%
- **Services**, 22%
- **Consumers**, 17%

Representative Expert Titles

Shale Gas Producers
- Exploration Manager, Independent
- Operations Manager, Super Major
- Reservoir Engineers, Various
- VP, Technology, Independent
- Chief Geologist, Independent

Oilfield Service Companies
- Water Technology Manager
- Field Development Manager
- Modeling Technologists
- Sales Manager

Investors
- VP, E&P-Focused Investment Bank
- President, Energy VC Firm
- Principal, E&P VC Firm

Gas Consumers
- Technical Fellow, Automaker
- Gas Buyer, Steel Company
- LNG Manager, Major
Outline

- Intro to ADI Analytics
- Background and Methodology
 - Marcellus Innovation Needs
- Conclusions
We assembled 30+ technical / operational issues by value chain segment and distilled them into 9 innovation challenges

Major Innovation Challenges

<table>
<thead>
<tr>
<th>Exploration</th>
<th>Drilling & Completions</th>
<th>Gas Monetization and Right to Operate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ability to identify “sweet spots”</td>
<td>4. Develop faster, cheaper, and cleaner D&C technologies</td>
<td>7. Increase attractiveness and adoption of natural gas-based transportation</td>
</tr>
<tr>
<td>2. Improve predictive modeling capabilities</td>
<td>5. Improve fracturing effectiveness with fewer non-performing fractures</td>
<td>8. Develop cheap and scalable natural gas conversion / utilization processes</td>
</tr>
<tr>
<td>3. Develop tools for hydrocarbon characterization</td>
<td>6. Increase hydrocarbon recovery or reduce shale gas well decline rates</td>
<td>9. Optimize water footprint through reduction, recycle, and treatment processes</td>
</tr>
</tbody>
</table>
Ability to identify “sweet spots”

Key Reservoir Properties

<table>
<thead>
<tr>
<th>Rock Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brittle rock</td>
</tr>
<tr>
<td>Stress regime</td>
</tr>
<tr>
<td>Over-pressure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Well Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local lithological variations</td>
</tr>
<tr>
<td>Faults</td>
</tr>
<tr>
<td>Water</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas in Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity</td>
</tr>
<tr>
<td>Microporosity</td>
</tr>
<tr>
<td>Organic content</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of dry gas</td>
</tr>
<tr>
<td>Liquid content</td>
</tr>
</tbody>
</table>

Key Issues

- Initial thinking around the lack of “sweet spots” has now changed
- Identification of “sweet spots” is challenging and needs inter-disciplinary approaches spanning geomechanics, geochemistry, petrophysics, seismology, rock properties, and other areas

Technology Needs

- Cheaper and ultra-high density seismic imaging or equivalent subsurface diagnostic tools
- Better integration and modeling of various data sets coupled with subsurface measurements

© 2009-2011 ADI Analytics LLC. Prepared for Shale Gas Innovation & Commercialization Center
2 Improve predictive modeling capabilities

Key Modeling Challenges

- Nanodarcy permeability
- Fracture locations
- Shale Gas Models
- Adsorbed gas in organic media

Key Issues

- Existing models and modeling approaches are generally inadequate
- Fundamental research to develop underlying principles is still underway

Technology Needs

- Better integration and modeling of various data sets coupled with subsurface measurements
- Development of seismic search engines to interrogate increasing data volumes
Develop tools for hydrocarbon characterization

Representative Biomarkers

<table>
<thead>
<tr>
<th>Biomarker Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotope Rollover</td>
<td>Ethane isotope rollover in produced gas indicates in situ gas cracking, well pressure, and overall productivity</td>
</tr>
<tr>
<td>Isotope Reversals</td>
<td>Isotope reversals in mud gas indicates over-pressured shale gas basins</td>
</tr>
<tr>
<td>Permeability Markers</td>
<td>Differences in gas isotope compositions between free and adsorbed gases</td>
</tr>
<tr>
<td>Other Biomarkers</td>
<td>New biomarkers, e.g., diamondoids, can provide new insights and information to support exploration</td>
</tr>
</tbody>
</table>

Key Issues

- Biomarkers such as diamondoids indicate crude oil maturity and are present in higher amounts in deeper, mature oils as a lot of oil has cracked into gas
- Better geochemical analyses using biomarkers can help find sweet spots

Technology Needs

- Identify relevant biomarkers
- Correlate biomarkers to key reserve, productivity, and performance metrics
4 Develop faster, cheaper, and cleaner D&C technologies

Marcellus Production Costs
(U.S. $ Per Million Btu)

Key Issues
- The share of drilling and completion costs continue to be high notwithstanding significant cost reductions
- Problem accentuated by large number of wells required

Technology Needs
- Advanced drilling technologies, e.g., at high pressures, lasers, and spallation
- Engineering system optimization of drilling operations to further reduce costs
- Optimized and environment-friendly drilling muds and fracking fluids

Source: ADI Analytics Research
Improve fracturing effectiveness with fewer non-performing fractures

Share of Low-Performing Fractures (Fractures contributing 1-5% of production)

Key Issues

- Growing realization that production per cluster of fractures is not uniform in shale gas reservoirs
- Nearly 30% - 50% of fractures contribute less than 1% to 5% of gas production

Technology Needs

- Better fracture imaging and siting, e.g., with cheaper micro-seismic, alternative diagnostic tools such as ultrasound, and better data interpretation
- Advanced proppants and optimized proppant delivery mechanisms

Sources: A. Gatti, Schlumberger, December 2010; ADI Analytics Research
Increase hydrocarbon recovery or reduce shale gas well decline rates

Average First-Year Decline in Gas Production

<table>
<thead>
<tr>
<th>Location</th>
<th>First-Year Decline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcellus</td>
<td>64%</td>
</tr>
<tr>
<td>Barnett</td>
<td>64%</td>
</tr>
<tr>
<td>Fayetteville</td>
<td>65%</td>
</tr>
<tr>
<td>Haynesville</td>
<td>77%</td>
</tr>
</tbody>
</table>

Key Issues

- Liquid hydrocarbons and water can impact gas production from wells by reducing permeability
- Gas sorbed on clays and organic matter versus free gas can impact first-year declines

Technology Needs

- Advanced proppants and optimized proppant delivery mechanisms
- Separation of liquid hydrocarbons and water from gas downhole
- Microbial enhanced hydrocarbon recovery

Sources: D.M. Jarvie, Worldwide Geochemistry, 2010; ADI Analytics Research
7 Increase attractiveness and adoption of natural gas-based transportation

Energy Density of Various Fuels
(Thousand Btu Per Cubic Foot)

- **Diesel**: 1,058
- **Gasoline**: 922
- **Ethanol**: 594
- **CNG**: 266

Key Issues
- CNG vehicles suffer from lower compression ratio and efficiency …
- … Emit high unburned CH₄ emissions
- Low population of CNG vehicles and lack of fueling infrastructure

Technology Needs
- Low-cost vehicle retrofit and fuel distribution technologies
- Evaluation of CNG blends with other fuels for fleet-based transportation
- Conversion to DME as diesel substitute

Sources: J. Eberhardt, DEER, 2002; A.L. Boehman, Penn State University, April 2011; ADI Analytics Research
Develop cheap and scalable natural gas conversion / utilization processes

Key Issues
- Various natural gas conversion processes have high capital costs …
- … Driven primarily by the cost of generating syngas and …
- … Limited number of commercial plants

Technology Needs
- Cheap and scalable syngas process
- Modular GTL, MTG, and MTO plants
- Cost-effective air separation units
- Other C1 activation routes
Optimize water footprint through reduction, recycle, and treatment processes

Key Issues
- Flowback (low salinity, high organics) produced initially is reused by 20-30%
- Produced water is low-organic, high-salinity effluent
- Varies a lot across wells/basins/time

Technology Needs
- Drilling muds, fracking fluids, and proppants compatible with used water
- Water treatment options that cost no more than $2-$5 per barrel
- Cradle-to-grave water management solutions

Intra-Basin Produced Water Variability (Total Dissolved Solids, mg/l)

Sample 1: 252,000
Sample 2: 160,000
Sample 3: 144,000
Sample 4: 33,300
Tap water: 440

Sources: D. Sarkar, Halliburton, 2010; ADI Analytics Research
Outline

- Intro to ADI Analytics
- Background and Methodology
- Marcellus Innovation Needs
- Conclusions
Conclusions

- The shale gas industry has **grown rapidly and significantly** in the Marcellus basin …

- … But **continues to need new technologies and innovations** to address their technical challenges and operational pain points

- These industry needs are a **significant opportunity for researchers, innovators, and entrepreneurs** to develop step-change solutions for industry

- In addition, **talent and workforce development, supply chain growth, stakeholder engagement, and interactive policy development** can help Pennsylvania tap **additional economic development value** from the Marcellus

- Finally, technology development and commercialization can be challenging but the oil and gas industry has a proven track record of evaluating and integrating new innovations